Development of measurement methodology at single cell and stack level for unstable hydrogen fuel impurity studies

HFC Nordic Conference
Sandviken, 26.10.2016
Jaana Viitakangas, VTT Technical Research Centre of Finland Ltd
Hydrogen Contaminant Risk Assessment

3-year EU project (FCH JU), 2014-17, coordinated by VTT
6 European partners, total budget of 3.907 M€.

The objectives of the project are

- to provide information to reduce cost of hydrogen fuel quality assurance (QA)
- to provide recommendations for revision of existing ISO 14687-2:2012 standard for hydrogen fuel in automotive applications

http://hycora.eu/deliverables.htm
Development of measurement methodology at single cell and stack level for unstable hydrogen fuel impurity studies

- HyCoRA strategy for cost reduction of H2 quality assurance (QA)
 - **Risk Assessment**, qualitative and quantitative, requires information from

 a) Real susceptibility for various poisonous species specifically for automotive applications

 b) Probabilities for QA failure in hydrogen production site and/or at HRS

 a) Concentration correlations between contaminant species in fuel
Development of measurement methodology at single cell and stack level for unstable hydrogen fuel impurity studies

The logical tree studying the contaminants that poison the catalyst

- Impurity
 - non-adsorbing
 - no effect
 - adsorbing
 - not reacting
 - Water soluble
 - Measure/estimate adsorption, wash-out, accumulation
 - reacting
 - Water insoluble
 - Measure/estimate adsorption, accumulation
 - New impurity and new analysis

SCONH₃, HCHO/HCOOH
CO NH₃, HCHO/HCOOH
NH₃, HCHO/HCOOH
HCHO/HCOOH permeating
Measurements with unstable H2 impurities

Unstable contaminants, such as HCHO/HCOOH, may not only to absorb to catalyst sites, but also

- **Accumulate** - into the H2 feed (recirculation system)
- **Decompose** - and form other, possibly harmful species
 - Contaminant concentration entering the cell should be monitored
- **Dissolve in water** - and exit the system
 - Collection and analyse of purge water needed
- **Permeate through Nafion membrane** - e.g. membrane gas dryer in gas analysis loop
 - Causing possible loss of contaminants before GC
 - A drying method 100% selective for water would be needed
 - Part may end up in the cathode side and oxidize there
Test systems

- **Single cell test station** (Green Light G60)
- Recirculation + GC Agilent 6890N

- **Stack test station** + recirculation + GC
- PowercellS2 10-cell stack (SN025)
- Low anode loading MEA: 0,05 mg$_{Pt}$/cm2
Test system bench - stack

- Miniature automotive 1-2-kW system
- Three main subsystems: anode, cathode and coolant
- Additional instrumentation: contaminant injection line and gas sampling loop and N2 flushing system for corrosive impurities
- Anode is operated in dead end (constant fuel feed pressure) with purge
Impact of formaldehyde – stack measurement

- Two runs (4 and 3 hours) with ~1.6 ppm HCHO (and ~0.3 ppm CO) and 0.6 Acm⁻² using fuel utilisation of 99.5-99.6% (contaminant enrichment factor of 200-250)

- A very small (~ 10 mV) average voltage drop in 4 hours due to HCHO
 - In CO reference poisonings 1.86 ppm leads 50 mV average voltage drop in 67-71 min

- Current limit for HCHO (ISO 14687-2:2012) is 0.01 ppm

- A large CH4 increase (0 to 200 ppm) in anode recirculation loop → methanation of HCHO

- Some minor CO₂ increase/fluctuation in anode recirc loop. No changes in CO level.
Measurement conclusions with HCHO

- Measurement with HCHO are difficult as it decomposes quickly, is water soluble and permeable through membrane
 - Some question remains open regarding to the decomposition products (may decompose to CO)

- A major part (~50%) of HCHO seems to be methanated (still uncertain). Some part of HCHO (~10-15%) is dissolved in water and purged out with H2 purge.

- ~1.6 ppm (160 x limit in ISO 14687-2:2012) HCHO has probably a negligible effect
Acknowledgements
The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621223.

Thank you

http://hycora.eu/
Jaana.Viitakangas@vtt.fi